May 16: Fundamental Theorem of Galois Thery
Plan

- Today: Prost of Eurd Trn of Calas Thery
- Wednesday: Discussion (theorg \& hw 8)
- Final gral:
$\int T^{T \text { ram }}$ Given $f \in \mathbb{Q}[x]$ with $Q \subset L$ spititry fiedel, f is solvalde by realicals. $\rightleftharpoons \operatorname{Gal}(\cup \mathbb{Q})$ soluable

The bijections are given by

$$
E \longmapsto \operatorname{Gal}(L E)
$$

foxe fold $L^{H} \longleftarrow H$
$\left(L^{H}=\{x \in L \mid \forall \sigma \in H \quad \sigma(x)=x\}\right)$
These two maps are inverses!
What do we need to pane?
Need to show
\rightarrow Goal $E=L^{\text {hal (UE) }}$

Conversely,
$H \longmapsto L^{H} \longmapsto \operatorname{Gal}\left(L / L^{H}\right)$
Goal: $H=\operatorname{Cal}\left(L L^{H}\right)$
$\frac{\text { Lemma: Given } H \subset C e a l(L K) \text {, }}{H}$
$L^{H} \subset L$ normal \& separable, Hat is, L is challis over L^{H}.
Proof Fix $\alpha \in L$. Let's find min poly of α over L^{H} \rightarrow look at orbit of α under H $\leadsto\left\{\alpha_{1}=x_{1}, \alpha_{2}, \ldots, \alpha_{t}\right\}$ orbit tx
Look at

$$
\begin{aligned}
& f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{t}\right) \\
& \in L^{H}[x] \text { Why care the coff. }
\end{aligned}
$$

The min poly of α divides $f(x)$. Since the rots of f are eisinuct $\&$ in L, me separble tromal/LH

Lemma: Given $H \subset C \operatorname{Cal}(L K)$, $L^{H} \subset L$ normal \& separable,
that is, L is Challis over L^{H}.
Proof Fix $\propto \in L$. Let's find min
pols over L
$\leadsto\left\{\alpha=x_{1}, \alpha_{2}, \ldots, \alpha_{t}\right\}$ orbit $H x$
Lock at

$$
\begin{aligned}
& f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{t}\right) \\
& \in L^{H}[x] \text { Lin care the coff. } \\
& \text { in LH? }
\end{aligned}
$$

The min ply of a $\frac{1}{\text { divides } f(x)}$ Since the rots of f are distinct $\&$ in L, $\sim L$ separble tromal/LH

$$
\alpha_{1} \alpha_{2} \alpha_{3} \cdots \alpha_{t} \in L^{H} ?
$$

Why is $\alpha_{1} \alpha_{2} \ldots \alpha_{t}$ fired by every $\sigma \in l l$?

$$
\frac{E_{x}=\tau}{\tau \in H}\left(\prod_{\sigma \in H} \sigma(\alpha)\right)=\prod_{\sigma \in H} \sigma(\alpha)
$$

In geread, t peans the pots and since the celt are sypmetio poly in $\alpha_{1}, . ., t_{t}$, we see Hat each $\sigma \in H$ fixes each curet. $\sim s \in L^{H}[x]$

Fix KCL Galois fink ext
Lemma Given $H \subset$ Cal (LK),
$H=\operatorname{Ga}\left(L / L^{H}\right)$ \& $|H|=\left|L: L^{H}\right|$
(Consequence: $H \mapsto L^{H} \longmapsto$ Gall LL' ${ }^{\prime}$) gives bade H
PE We will use that every fried separable field ext is simple.
\Rightarrow J $\alpha \in L$ sit. $L=K(\alpha)$
Observe: Have $K<L^{H} \subset L$
Also $L=L^{H}(\alpha)$
Given α, the 比 orbit

$$
\begin{aligned}
& H_{\alpha}=\left\{\alpha=\alpha_{1}, \cdots, \alpha_{t}\right\} \\
& f(x)=\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{t}\right) \in L^{M}[x]
\end{aligned}
$$

Let $p(x)$ be nim poly of $\alpha / L^{t y}$ Know $p(x) \mid f(x)$.
know

$$
n_{i}=\left[L: L^{K T}\right]=\operatorname{deg} p(x)
$$

$$
t:=\operatorname{dog} f(x) \geqslant n
$$

Also know

$$
\begin{aligned}
& \text { Iso know } \\
& \text { \#Gal(LLH) } \leq\left|L: L^{H}\right| \\
& \text { know }
\end{aligned}
$$

Also know
$H \subset \operatorname{Cal}\left(L^{H}\right)$

$$
\left.\Rightarrow \# H \leq \# C \text { cal }\left(U L^{n}\right) \leq \mid L^{\prime} L^{i}\right]=n
$$

know

$$
\# H \geqslant t=\operatorname{deg} f \geqslant \operatorname{deg} p=n
$$

For an g grope action C action Σ,
the sine of orbit $G x=\# C_{1}$
Carch-de \#H $=n$
Becangr $\neq C \operatorname{Car}\left(L / L^{H}\right)$ \& have came size, $H=\operatorname{Gall}\left(L_{L} L^{H}\right)$

